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Review of general results

Introduction

M compact and connected manifold (with or without boundary) of dimension
n ; this include the case of a bounded open set Ω ⊂ Rn.

λ1(M) ≤ λ2(M) ≤ · · · ≤ λk(M) ≤ . . . eigenvalues of the Laplacian −∆M ,
counted with multiplicities : for all k ≥ 1, there a non-zero eigenspace
Eλk (M), such that for all u ∈ Eλk (M),

−∆Mu = λk(M)u.

If ∂M 6= ∅, we impose a boundary condition :

u = 0 on ∂M (Dirichlet) or
∂u

∂ν
= 0 on ∂M (Neumann).

For some domains we can make explicit computation of the spectrum and of a
basis of eigenfunctions : rectangles, flat tori, spheres and balls, some triangles,
circular sectors,. . .

Corentin Léna (UNITO) Nodal Patterns 8 March 2015 4 / 47



Review of general results

Nodal set and nodal domains

If u eigenfunction :

nodal set : N (u) = {x ∈ M ; u(x) = 0} ;

nodal domain : connected component of M \ N (u) ;

nodal partition associated with u : family of all the nodal domains of u.

What information can we get about these objects ?

We focus on the number of nodal domains ν(u), called the nodal count.

For λ eigenvalue, we define

κ(λ) := min{k : λk(M) = λ}.
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Review of general results

Example : increase of nodal count by linear combination

Ω = (0, 1)2 ⊂ R2 and λ = 10π2 = π2(33 + 12).

u(x , y) = sin(3πx) sin(πy) and v(x , y) = sin(πy) sin(3πx).

If w := u + v , w(x , y) = 4 sin(πx) sin(πy) sin(π(x + y)) sin(π(y − x)).

ν(u) = ν(v) = 3 and ν(u + v) = 4.

(a) N (u) (b) N (v) (c) N (w)
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Review of general results

Courant nodal domain theorem

Theorem (Courant, 1923)

If u is an eigenfunction of −∆M associated with the eigenvalue λ, ν(u) ≤ κ(λ).

Proof : By contradiction, let κ := κ(λ) and let u be an eigenfunction associated
with λ, with nodal domains

D1, . . . ,Dκ,Dκ+1, . . .

There is a non-zero linear combination

ϕ = α1ϕD1 + · · ·+ ακϕDκ

orthogonal to each ui for 1 ≤ i ≤ κ− 1. Therefore, according to the max-min
principle

λκ ≤
∫
M
|∇ϕ|2 dx∫

M
|ϕ|2 dx

≤ λ = λκ,

and ϕ is an eigenfunction associated to λ. But ϕ is identically zero on Dκ+1, in
contradiction with unique continuation.
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Review of general results

Courant-sharp eigenvalue and minimal partitions

Definition

We say that an eigenfunction u associated with the eigenvalue λ is Courant-sharp
if ν(u) = κ(λ). We say an eigenvalue λ is Courant-sharp if Eλ contains a
Courant-sharp eigenfunction.

Definition

k-partition : family of k open, connected and disjoint subsets of M,
D = {D1, . . . ,Dk}.
Energy : Λk(D) = max1≤i≤k λ1(Di ).

Minimal energy : Lk(M) := infD Λk(D).

Minimal k-partition D∗ : Λk(D∗) = Lk(M).

The max-min principle tells us that the nodal partition associated with a
Courant-sharp eigenfunction is minimal.
For n = 2, the converse is true : any eigenfunction, whose associated nodal
partition is minimal, is necessarily Courant-sharp
(Helffer–Hoffmann-Ostenhof–Terracini, 2009).
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Review of general results

Refinement of Courant theorem

We define νk = max{ν(u) ; u ∈ Eλk (M)}.

Theorem (Pleijel, 1956)

If Ω is a bounded open set in R2 with a regular boundary, only a finite number of
eigenvalues are Courant-sharp. In fact

lim sup
k→∞

νk
k
≤ 4

λ1(D)
=

4

j2
0,1

< 1.

Theorem (Bérard–Meyer, 1982)

For all n ≥ 2, there exists γn < 1 such that, for all compact manifold M of
dimension n,

lim sup
k→+∞

νk
k
≤ γn.

Here we are imposing a Dirichlet boundary condition on ∂M if ∂M 6= ∅.
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Review of general results

Proof of Pleijel’s result

Let u, associated with λk(Ω), have νk nodal domains D1, . . . ,Dνk .

Applying Faber-Krahn : λk(Ω) = λ1(Di ) ≥
πj2

0,1

|Di | pour 1 ≤ i ≤ νk .

Summing : νkπj
2
0,1 ≤ λk(Ω)|Ω|.

Weyl’s law : λk(Ω) ∼ 4πk
|Ω| .

Conclusion : lim supk→+∞
νk
k ≤

4
j2
0,1

.
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Review of general results

Additional remarks

Asymptotic isoperimetric inequality for domains of small volume in the proof
by Bérard–Meyer : for all ε > 0, there exists V (ε,M) > 0 such that, if

|D| ≤ V (ε,M), |∂D||D|− n−1
n ≥ (1− ε)|∂Bn||Bn|− n−1

n .

Asymptotic Faber-Krahn inequality : if |D| ≤ V (ε,M),

λ1(D)|D| 2n ≥ (1− ε)2λ1(Bn)|Bn| 2n .

The constant γn is explicit :

γn =
(2π)n

ω2
nλ1(Bn)n/2

=
(2π)n

ω2
nj

n
(n−2)/2,1

=
2n−2n2Γ( n

2 )2

jn(n−2)/2,1

< 1.

The sequence (γn)n≥2 is decreasing and γn = O
(
n
(

2
e

)n)
.

Problem open for the Neumann boundary condition. Conjecture : same
theorem, with the same constant. Proved in the case of a bounded open set
in R2 with a piecewise analytic boundary (Polterovich, 2009). Key point : the
number of nodal domain touching the boundary is controlled by

√
λ

(Toth–Zeldtich, 2009).
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Review of general results

Conjecture by Polterovich, in the case of a bounded domain in Ω ∈ R2 :

lim sup
k→+∞

νk
k
≤ 4

λ1 ((0,
√
π)2)

=
2

π
' 0.6366.

Compare with the upper bound 4
j2
0,1
' 0.6917.

In the case of a rectangle Ra,b = (0, a)× (0, b), with b2

a2 /∈ Q, the set of limit
points of the sequence

(
νk
k

)
k≥1

is the interval
[
0, 2

π

]
.

Corresponding conjecture in dimension n > 2 :

lim sup
k→+∞

νk
k
≤ (2π)n

ω2
nλ1

((
0, ω

1/n
n

))n/2
=

2n

ωnnn/2
.

In the case of an irrational rectangular domain Ra = Πn
i=1(0, ai ) (the a−2

i ’s
are linearly independent over Q), the set of limit points of

(
νk
k

)
k≥1

is the

interval
[
0, 2n

ωnnn/2

]
.
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Review of general results

Some examples

All Courant-sharp eigenvalues besides λ1(M) and λ2(M) are known in some
specific examples.

Square, Dirichlet case (λ4) (Pleijel, 1956 ; Bérard–Helffer 2014) ;

Sphere S2 (none) (Leydold, 1996) ;

Disk, Dirichlet case (λ4) (Helffer–Hoffmann-Ostenhof–Terracini, 2009) ;

Square, Neumann case (λ4, λ5, and λ9) (Helffer–Persson-Sundqvist, 2014) ;

Square and cubical tori (none) (L., 2014, L. 2015) ;

Equilateral torus (none), equilateral (λ4), hemi-equilateral (none) and
right-angled isosceles (none) triangles (Bérard–Helffer, 2015) ;

Disk, Neumann case (λ4), Sn−1 for n ≥ 4 (none), and unit ball in dimension
n ≥ 3, Dirichlet and Neumann cases (none) (Helffer–Persson-Sundqvist,
2015) ;

Cube, Dirichlet case (none) (Helffer–Kiwan, 2015) ;

Right-angled isosceles triangle, Neumann case (λ3, λ4 and λ6)
(Band–Bersudsky–Fajman, 2015)
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The square two-dimensional torus

Presentation of the example

T2 flat square torus of dimension 2 : T2 = (R/Z)2.

Eigenvalues of −∆T2 : λm,n = 4π2(m2 + n2).

Eigenfunctions :
uccm,n(x , y) = cos(2mπx) cos(2nπy);

ucsm,n(x , y) = cos(2mπx) sin(2nπy);

uscm,n(x , y) = sin(2mπx) cos(2nπy);

ussm,n(x , y) = sin(2mπx) sin(2nπy).

Vector space of eigenfunctions Em,n, of dimension 1, 2 or 4.

L2(T2) =
⊕

(m,n)∈N2

Em,n.

λ1(T2) = λ0,0 = 0 and λk(T2) = λ1,0 = λ0,1 = 4π2 for k ∈ {2, 3, 4, 5}.

Corentin Léna (UNITO) Nodal Patterns 8 March 2015 15 / 47



The square two-dimensional torus

Statement of the result

Theorem

The only Courant-sharp eigenfunctions of −∆T2 are associated with λk(T2) for
k ∈ {1, 2, 3, 4, 5} (first and second eigenvalues).

Corollary

The minimal k-partitions of T2 are nodal only for k ∈ {1, 2}.

Corollary

For k ≥ 3, we have νk ≤ k − 1.
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The square two-dimensional torus

Isoperimetric domains for T2

(Howards–Hutchings–Morgan, 1999)

(d) 0 < A ≤ 1
π

(e) 1
π
≤ A ≤ 1− 1

π
(f) 1− 1

π
≤ A < 1
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The square two-dimensional torus

Isoperimetric profile for T2

For A ∈ (0, 1], I (A) := inf
{
|∂Ω| : Ω ⊂ T2 and |Ω| = A

}
.

I (A) =


2(πA)1/2 if 0 < A ≤ 1

π (disk);
2 if 1

π ≤ V ≤ 1− 1
π (strip);

2(π(1− A))1/2 if 1− 1
π ≤ A (complement of a disk).
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The square two-dimensional torus

Faber-Krahn inequality for T2

Proposition

Let D ⊂ T2 such that |D| ≤ 1
π . Then λ1(D)|D| ≥ πj2

0,1.

Proof : we use the co-area formula and apply Schwartz symmetrization to the
level sets Dt = {x ; u(x) > t}, where u is a positive eigenfunction associated with
λ1(D). This works since all the level sets satisfy |Dt | ≤ 1

π .
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The square two-dimensional torus

Upper and lower bounds

Lemma

If λ is a Courant-sharp eigenvalue with κ(λ) ≥ 4, then κ(λ) ≤ λ
πj2

0,1
.

Proof : for u associated eigenfunction with κ(λ) nodal domains, there is one nodal
domain D satisfying |D| ≤ 1

κ(λ) <
1
π , and therefore πj2

0,1 ≤ λ1(D)|D| ≤ λ
κ(λ) .

N(λ) := ]{k : λk(T2) < λ} (counting function).

Lower bound : N(λ) > π
(√

λ
2π −

√
2

2

)2

.

For an eigenvalue λ, κ(λ) = N(λ) + 1.

A priori bound : λ is not Courant-sharp if κ(λ) ≥ 27.
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The square two-dimensional torus

Reduction to a finite list

λ
4π2 indices multiplicity κ λ

πj2
0,1

0 (0, 0) 1 1
1 (1, 0), (0, 1) 4 2
2 (1, 1) 4 6 4.35
4 (2, 0), (0, 2) 4 10 8.69
5 (2, 1), (1, 2) 8 14 10.86
8 (2, 2) 4 22 17.38
9 (3, 0), (0, 3) 4 26 19.56

Table : The 29 first eigenvalues
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The square two-dimensional torus

Numerical results

(g) k = 3 (h) k = 4 (i) k = 5

Figure : Minimal k-partitions of T2 for k ∈ {3, 4, 5}

For k ∈ {3, 4}, the tilings by hexagons are actually not minimal.
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The cubic three-dimensional torus
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The cubic three-dimensional torus

Presentation of the example

T3 the flat cubic torus of dimension 3 : T3 = (R/Z)3.

Eigenvalues of −∆T3 : λm,n,p = 4π2(m2 + n2 + p2).

Eigenfunctions :

um,n,p(x , y , z) = ϕ(2mπx)ψ(2nπy)χ(2pπz),

with ϕ, ψ, and χ in {cos, sin}.

Vector space of eigenfunctions Em,n,p, of dimension 1, 2, 4 or 8.

L2(T2) =
⊕

(m,n,p)∈N2

Em,n,p.

λ1(T3) = λ0,0,0 = 0 and λk(T3) = λ1,0,0 = λ0,1,0 = λ0,0,1 = 4π2 for
k ∈ {2, 3, 4, 5, 6, 7}.
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The cubic three-dimensional torus

Statement of the result

Theorem

The only Courant-sharp eigenfunctions of −∆T3 are associated with λk(T3) for
k ∈ {1, 2, 3, 4, 5, 6, 7} (first and second eigenvalues).

Corollary

For k ≥ 3, we have νk ≤ k − 1.
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The cubic three-dimensional torus

Isoperimetric inequality

Main difficulty : the isoperimetric problem on the torus is not solved in dimension
3 or larger.

There are partial results for the periodic isoperimetric problems.

Theorem (Hauswirth–Perez–Romon–Ros, 2004)

Let U ⊂ T2 × R with |U| ≤ 4π
81 . Then∣∣∂B3
∣∣ ∣∣B3

∣∣− 2
3 ≤ |∂U| |U|−

2
3 .
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The cubic three-dimensional torus

Spheres-cylinders-planes profile

For V ∈ (0,+∞), I (V ) := inf
{
|∂Ω| : Ω ⊂ T2 × R and |Ω| = V

}
.

Minimizing among regions bounded by spheres, cylinders and pairs of
two-dimensional planar tori produces the spheres-cylinders-planes profile . For
V ∈ (0, 1],

ISCP(V ) =


(36π)1/3V 2/3 if 0 < V ≤ 4π

81 (sphere);
2π1/2V 1/2 if 4π

81 ≤ V ≤ 1
π (cylinder);

2 if 1
π ≤ V (pair of tori).

Conjecture : I = ISCP .

Previous result : I = ISCP in the spherical range.
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The cubic three-dimensional torus

Conjectured isoperimetric domains for T2 × R

(a) 0 < V ≤ 4π
81

(b) 4π
81
≤ V ≤ 1

π
(c) 1

π
≤ V
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The cubic three-dimensional torus

Conjectured isoperimetric profile T2 × R
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The cubic three-dimensional torus

Inequalities in T3

Proposition

Let Ω be an open set in T3 with |Ω| ≤ 4π
81 . We have∣∣∂B3

∣∣ ∣∣B3
∣∣− 2

3 ≤ (|∂Ω|+ 2 |Ω|) |Ω|−
2
3 .

Restatement :

(
1−

(
2|Ω|
9π

) 1
3

) ∣∣∂B3
∣∣ ∣∣B3

∣∣− 2
3 ≤ |∂Ω| |Ω|−

2
3 .

Corollary

Let Ω be an open set in T3 with |Ω| ≤ 4π
81 , we have(

1−
(

2 |Ω|
9π

) 1
3

)2

λ1(B3)
∣∣B3
∣∣ 2

3 ≤ λ1(Ω) |Ω|
2
3 .

Remark : λ1(B3) = π2.
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The cubic three-dimensional torus

Cutting procedure (adapted from Bérard–Meyer, 1982)

Corentin Léna (UNITO) Nodal Patterns 8 March 2015 31 / 47



The cubic three-dimensional torus

Proof of the isoperimetric inequality

Isoperimetric inequality :

Hz=t :=
{

(x , y , z) ∈ T3 : z = t
}

.

|Ω| =
∫ 1

0
|Ω ∩Hz=t | dt.

There exists tz ∈ (0, 1) such that |Ω ∩Hz=tz | ≤ |Ω|.
We consider Ω̃ := Ω \ Hz=t as a subset of T2 × R ; we have |Ω̃| = |Ω| and

|∂Ω̃| ≤ |∂Ω|+ 2|Ω| .
We apply the isoperimetric inequality in T2 × R.
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The cubic three-dimensional torus

Upper and lower bounds

Lemma

If λ is a Courant-sharp eigenvalue of −∆T3 with κ(λ) ≥ 7 , then

κ(λ) ≤

((
3

4π4

) 1
3 √

λ+

(
2

9π

) 1
3

)3

.

Proposition

For λ ≥ 12π2 , N(λ) ≥ 4π
3

(√
λ

2π −
√

3
2

)3

.
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The cubic three-dimensional torus

Reduction to a finite list

A priori bound : λ is not Courant-sharp if κ(λ) ≥ 270.

After examination of the remaining eigenvalues, the only ones which can be
Courant-sharp are :

λ1(T3) = λ0,0,0 = 0 ;

for k ∈ {2, . . . , 7}, λk(T3) = λ1,0,0 = λ0,1,0 = λ0,0,1 = 4π2 ;

for k ∈ {8, . . . , 19}, λk(T3) = λ1,1,0 = λ1,0,1 = λ0,1,1 = 8π2.
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The cubic three-dimensional torus

An isometry of T3
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The cubic three-dimensional torus

Courant Theorem with symmetry

Isometry : σ(x , y , z) := (x + 1/2, y + 1/2, z + 1/2).
Space of symmetric functions : S := {u ∈ L2(T3) : u ◦ σ = u}.
HS restriction of −∆T3 to S.
(λSk )k≥1 spectrum of HS .
If λ eigenvalue of HS , κS(λ) := inf{k : λSk = λ}

If u is an eigenfunction of HS , and D a nodal domain of u, then σ(D) is also a
nodal domain of u. Either σ(D) = D : the domain is symmetric, or σ(D) 6= D :
{D, σ(D)} is a pair of isometric domains. We denote by α(u) the number of
symmetric domains and by β(u) the number of pairs. We have
ν(u) = α(u) + 2β(u).

Courant theorem with symmetry (Leydold, 1996 ;
Helffer–Hoffmann-Ostenhof–Terracini, 2010)

If u is an eigenfunction of HS associated with the eigenvalue λ,

α(u) + β(u) ≤ κS(λ).
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The cubic three-dimensional torus

Conclusion of the proof

Remark :

um,n,p(x + 1/2, y + 1/2, z + 1/2) =

ϕ(2mπx + mπ)ψ(2nπy + nπ)χ(2pπz + pπ) =

(−1)m+n+pum,n,p(x , y , z) = (−1)m
2+n2+p2

um,n,p(x , y , z)

Consequence : if u is an eigenfunction associated with the eigenvalue 8π2, it is
symmetric , and ν(u) = α(u) + 2β(u) ≤ 2(α(u) + β(u)).

On the other hand, 8π2 is an eigenvalue of HS with κS(8π2) = 2. According to
Courant theorem with symmetry, α(u) + β(u) ≤ 2.

Therefore, ν(u) ≤ 4 (sharp bound) while κ(8π2) = 8.

The eigenvalue 8π2 of −∆T3 is not Courant-sharp.
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The cubic three-dimensional torus

Remarks and open questions

Does the same result holds for Tn, n ≥ 4 ?
Hope : find a good enough isoperimetric inequality to show that λ is not
Courant-shap if κ(λ) > 2.
Remark : if κ(λ) > 2, κ(λ) ≥ 2(n + 1), so we work with nodal domains of
volume no larger than 1

2(n+1) .

We can make n cuts by planes, and we obtain, for |Ω| ≤ ωn

2n ,(
1−

(
2n |Ω|
ωn

) 1
n

)
|∂Bn| |Bn|−

n−1
n ≤ |∂Ω| |Ω|−

n−1
n ,

but ωn

2n ∼ 1√
πn

(
πe
2n

) n
2 .

Even assuming cylinders are optimal, we recover the euclidean isoperimetric
inequality for |Ω| ≤ Vn, with

Vn =
(n − 1)n(n−1)ωn

n−1

nn(n−1)ωn−1
n

∼ e
1
4−

n
2

√
πn

.

Other types of isoperimetric inequalities, valid for all volumes ? The gaussian
isoperimetric profile is inefficient for small volumes.
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Parity of the number of nodal domains on rectangular tori
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Parity of the number of nodal domains on rectangular tori

Parity of the nodal count

T2
b := (R/Z)× (R/bZ)

Eigenvalues of −∆T2
b

:

λm,n = 4π2

(
m2 +

n2

b2

)
,

Eigenfunctions uccm,n, ucsm,n, uscm,n, ussm,n, with the same notation as before.

T. Hoffmann-Ostenhof. Geometric aspects of spectral theory (July 1st – July 7th,
2012), Problem Section (xv).
Oberwolfach Rep., 9(3) :2013–2076, 2012.T. Hoffmann-Ostenhof.

Problem

Is there a flat torus so that for some eigenfunction in the eigenspace Eλm,n for
some λm,n there is an non-constant eigenfunction u with an odd number of nodal
domains ?
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Parity of the number of nodal domains on rectangular tori

Irrational case

Proposition

If b2 is irrational, any non-constant eigenfunction u of −∆T2
b
has an even number

of nodal domains.

Nodal lines of ucc3,2 + 1
2u

ss
3,2 for b = e−1 :

Proof :

If m > 0, set v := (1/2m, 0).

For each basis function u ∈ {uccm,n, ucsm,n, uscm,n, ussm,n}, we have
u(x + v) = −u(x).
Example : cos (2πmx + π) cos

(
2πny
b

)
= − cos (2πmx) cos

(
2πny
b

)
We have a bijection between positive and negative nodal domains.

If m = 0, n > 0, and we do the same with v := (0, b/2n).
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Parity of the number of nodal domains on rectangular tori

The case b = 1

Proposition

If b = 1, any non-constant eigenfunction u of −∆T2
b
has an even number of nodal

domains.

In that case we can have higher multiplicities with pairs (m, n) 6= (m′, n′) such
that m2 + n2 = m′2 + n′2.

Lemma (Hoffmann-Ostenhof, 2015)

For (m, n) 6= (0, 0) , we write λ = m2 + n2 . If λ = 22p(2q + 1) with (p, q) ∈ N2 ,
then m = 2pm0 and n = 2pn0 , where exactly one of the integers m0 and n0 is
odd. If λ = 22p+1(2q + 1) with (p, q) ∈ N2 , then n = 2pm0 and n = 2pn0 , where
both integers m0 and n0 are odd.

In the first case, we set v := (1/2p+1, 1/2p+1).
In the second case, we set v := (1/2p+1, 0) or v := (0, 1/2p+1).

Corollary

For k ≥ 4, we have νk ≤ k − 2 .
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Parity of the number of nodal domains on rectangular tori

Counter-example for b = 1√
3

Proposition

If b = 1√
3
, there exists an eigenfunction of −∆T2

b
with three nodal domains.

Idea : consider vε = ucc1,1 + εucc2,0.

(d) N (ucc1,1) (e) N (ucc2,0)

Figure : Nodal sets of basis functions
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R

Figure : Nodal set of vε = ucc
1,1 + εucc

2,0 with ε = 0.1
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Parity of the number of nodal domains on rectangular tori

Proof

R :=

]
0,

1

2

[
×
]

0,
1

2
√

3

[
.

Change of coordinates : {
s = − cos (2πx) ;

t = − cos
(

2πy
b

)
.

R is sent to ]− 1, 1[×]− 1, 1[ . Nodal set of vε in the new coordinates :

st + ε(2s2 − 1) = 0 ,

two branches of hyperbola.
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Parity of the number of nodal domains on rectangular tori

(a) In (x , y)-coordinates (b) In (u, v)-coordinates

Figure : Nodal set in R
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Parity of the number of nodal domains on rectangular tori

Remarks

The arithmetical lemma still holds for the equation λ = αm2 + βn2 , with

α + β = 2 mod 4 . Therefore, if b =
√

α
β there can only be an even number

of nodal domains.

Assuming that

m2 +
n2

b2
= k2m2,

that is to say

b =
n

m
√
k2 − 1

,

vε = uccm,n + εuc,ckm,0

is an eigenfunction, with 2mn + 1 nodal domains for a small ε.

Problem : characterizing the rational numbers q, such that there exists an
eigenfunction on the torus T2√

q with an odd number of nodal domains.
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