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Introduction

@ M compact and connected manifold (with or without boundary) of dimension
n; this include the case of a bounded open set Q2 C R".

o M (M) < (M) <. < \(M) < ... eigenvalues of the Laplacian —Ayy,
counted with multiplicities : for all k > 1, there a non-zero eigenspace
Ex.(m), such that for all u € Ey, (m),

7AMU = )\k(/\//)u

If OM +# (), we impose a boundary condition :

u =0 on OM (Dirichlet) or ? =0 on OM (Neumann).
v

For some domains we can make explicit computation of the spectrum and of a
basis of eigenfunctions : rectangles, flat tori, spheres and balls, some triangles,
circular sectors,. ..
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Nodal set and nodal domains

If u eigenfunction :
@ nodal set : N(u) = {x € M; u(x) =0};

@ nodal domain : connected component of M\ NV (u);

@ nodal partition associated with u : family of all the nodal domains of u.
What information can we get about these objects ?

We focus on the number of nodal domains v(u), called the nodal count.

For \ eigenvalue, we define

K(A) :==min{k : A(M) = A}

Corentin Léna (UNITO) Nodal Patterns 8 March 2015

5/ 47



Example : increase of nodal count by linear combination

Q=(0,1)> C R? and X\ = 107* = 7?(3% 4 1?).

u(x,y) = sin(3mx)sin(my) and v(x,y) = sin(my) sin(37x).

If w:=u+v, w(x,y) = 4sin(mx)sin(my)sin(m(x + y)) sin(m(y — x)).
v(u) =v(v) =3 and v(u+v) =4.

(a) N(u) (b) N(v) () N(w)
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Review of general results

Courant nodal domain theorem

Theorem (Courant, 1923) J

If uis an eigenfunction of —Ay, associated with the eigenvalue A, v(u) < k(\).

Proof : By contradiction, let x := x(\) and let u be an eigenfunction associated
with A, with nodal domains

Dla"'7DI€7DK+17"'
There is a non-zero linear combination

99 = Cgl(le + e + aH(PD,C
orthogonal to each u; for 1 </ < k — 1. Therefore, according to the max-min
principle
2
< fM |Vip|” dx <
K = n 2 =
.//\//|99| dx

and ¢ is an eigenfunction associated to A. But ¢ is identically zero on D11, in
contradiction with unique continuation.
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Review of general results

Courant-sharp eigenvalue and minimal partitions

Definition

We say that an eigenfunction u associated with the eigenvalue \ is Courant-sharp

if v(u) = k(\). We say an eigenvalue X\ is Courant-sharp if Ex contains a
Courant-sharp eigenfunction.

Definition

@ k-partition : family of k open, connected and disjoint subsets of M,
D ={Dy,...,Dy}.

o Energy : N (D) = maxi<i<k A1(Di).
e Minimal energy : £,(M) = infp Ae(D).
e Minimal k-partition D* : N\ ,(D*) = £4(M).

The max-min principle tells us that the nodal partition associated with a
Courant-sharp eigenfunction is minimal.

For n = 2, the converse is true : any eigenfunction, whose associated nodal
partition is minimal, is necessarily Courant-sharp
(Helffer—Hoffmann-Ostenhof-Terracini, 2009).
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Refinement of Courant theorem

We define v, = max{v(u); u € E/\k(M)}'

Theorem (Pleijel, 1956)
If Q is a bounded open set in R? with a regular boundary, only a finite number of

eigenvalues are Courant-sharp. In fact

l Pk <
imsup — < -
k—oo Kk Al(D) Jo1

Theorem (Bérard—Meyer, 1982)
For all n > 2, there exists 7, < 1 such that, for all compact manifold M of
dimension n,

. Vi
limsup — < 7.
k—400 k

Here we are imposing a Dirichlet boundary condition on M if OM # ().
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Proof of Pleijel's result

@ Let u, associated with \((€2), have v, nodal domains Dy, ..., D,,.

2
Applying Faber-Krahn : \((Q) = A\(D;) > % pour 1 </ < yy.
Q|.

o Summing : vmjg ;< Ak(Q)
Weyl's law : A\, (Q2) ~ %.

Conclusion : limsup, ., % < jzi.
0,1
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Additional remarks

@ Asymptotic isoperimetric inequality for domains of small volume in the proof
by Bérard—Meyer : for all £ > 0, there exists V(g, M) > 0 such that, if
D] < V(e, M), |8D||D|~ % > (1 —¢)|oB"||B"| "7 .

@ Asymptotic Faber-Krahn inequality : if |D| < V(e, M),

A (D)|D]7 > (1 —&)2A,(B")|B"|7.
@ The constant v, is explicit :
= (2m)" _ (2m)" _ 2"-2n2r(g)2 -1
wpA(B7)Y2 Wil 501 J(n—2)/2.1

The sequence (v,)n>2 is decreasing and 7, = O (n (2)’1)-

e

@ Problem open for the Neumann boundary condition. Conjecture : same
theorem, with the same constant. Proved in the case of a bounded open set
in R? with a piecewise analytic boundary (Polterovich, 2009). Key point : the
number of nodal domain touching the boundary is controlled by v/
(Toth—Zeldtich, 2009).
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Review of general results

e Conjecture by Polterovich, in the case of a bounded domain in Q € R? :

4 2
li < — =~ ~0.6366.
Lﬂiﬂf K< M ((0,v7)?2) 7

Compare with the upper bound J.zi ~ 0.6917.
0,1
@ In the case of a rectangle R, = (0,a) x (0, b), with Z—j ¢ Q, the set of limit
points of the sequence (%)k>1 is the interval [O, %]

@ Corresponding conjecture in dimension n > 2 :

2m)" 2"
Iimsupﬂ < (2m) =

k—+o00 k W%)\l (<0 wl/n)) n/2 Wnnn/Q.

@ In the case of an irrational rectangular domain R, = MN7_,(

0, a
are linearly independent over Q), the set of limit points of ( )

) (the a7 %'s
(>1 1S the

. n
interval |:07 ﬁ} .
n
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Review of general results

Some examples

All Courant-sharp eigenvalues besides A\;(M) and \2(M) are known in some
specific examples.

Square, Dirichlet case (A1) (Pleijel, 1956 ; Bérard—Helffer 2014);

Sphere S? (none) (Leydold, 1996) ;

Disk, Dirichlet case (A\4) (Helffer—Hoffmann-Ostenhof-Terracini, 2009) ;
Square, Neumann case (A4, As, and \g) (Helffer—Persson-Sundqvist, 2014) ;
Square and cubical tori (none) (L., 2014, L. 2015);

Equilateral torus (none), equilateral (\4), hemi-equilateral (none) and
right-angled isosceles (none) triangles (Bérard—Helffer, 2015) ;

Disk, Neumann case (), S"~! for n > 4 (none), and unit ball in dimension
n > 3, Dirichlet and Neumann cases (none) (Helffer—Persson-Sundqvist,
2015):;

Cube, Dirichlet case (none) (Helffer—Kiwan, 2015);
Right-angled isosceles triangle, Neumann case (A3, Ay and X¢)
(Band-Bersudsky—Fajman, 2015)
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The square two-dimensional torus

© The square two-dimensional torus
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The square two-dimensional torus

Presentation of the example

T? flat square torus of dimension 2 : T? = (R/Z)>.

Eigenvalues of — Ao :

Eigenfunctions :

Vector space of eigenfunctions E, ,, of dimension 1, 2 or 4.

A1 (T?) =

Corentin Léna (UNITO)

- P Enn

(m,n)eN?

)\010 =0 and )\k(Tz) = /\1,0 = )\011 = 4’/T2 for k € {2,3,4,5}.
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Statement of the result

Theorem

The only Courant-sharp eigenfunctions of —Ar- are associated with A (T?) for
k € {1,2,3,4,5} (first and second eigenvalues).

Corollary

The minimal k-partitions of T? are nodal only for k € {1,2}.

Corollary
For k > 3, we have v, < k — 1.
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The square two-dimensional torus

Isoperimetric domains for T?
(Howards—Hutchings—Morgan, 1999)

r -------- ‘NN ... 1 r 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
: 1 1 1
{ i {
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| —— B —— o L o
(do<A< i Hi-L<Aa<i
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Isoperimetric profile for T?

For A€ (0,1], /(A) :=inf {|0Q| : Q C T? and |Q| = A}.

2(TA)/? fo<A<i (disk);
I(A)={ 2 fl<v<i-1 (strip);
m(L—A)Y2 if1-1<A (complement of a disk).
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Faber-Krahn inequality for T?

Proposition
Let D C T? such that [D[| < L. Then Ay(D)|D| > 7j3 ;. }

Proof : we use the co-area formula and apply Schwartz symmetrization to the
level sets Dy = {x; u(x) > t}, where u is a positive eigenfunction associated with
A1(D). This works since all the level sets satisfy |D;| < &.
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Upper and lower bounds

Lemma
If X is a Courant-sharp eigenvalue with r()\) > 4, then k(\) < - J

=~ o
o,

Proof : for u associated eigenfunction with k() nodal domains, there is one nodal

domain D satisfying |D| < .5y < ., and therefore 7j5; < \1(D)|D| < ﬁ

N(A) := #{k : A\(T?) < A} (counting function).

2
Lower bound : N(X\) > = (‘2/—5 — %) :
For an eigenvalue A, k(A\) = N(\) + 1.

A priori bound : X is not Courant-sharp if x(\) > 27.
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The square two-dimensional torus

Reduction to a finite list

4% indices multiplicity | x | =
m i
0 (0,0) 1 1

1 1(1,0),(0,1) 4 2

2 (1,1) 4 6 | 4.35
4 | (2,0), (0,2) 4 10 | 8.69
5 1(2,1), (1,2) 8 14 | 10.86
8 (2,2) 4 22 | 17.38
9 | (3,0),(0,3) 4 26 | 19.56

TABLE : The 29 first eigenvalues
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The square two-dimensional torus

Numerical results

ANy

(g) k=3 (h) k=4 (i) k=5

FIGURE : Minimal k-partitions of T? for k € {3,4,5}

For k € {3,4}, the tilings by hexagons are actually not minimal.
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The cubic three-dimensional torus

© The cubic three-dimensional torus
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Presentation of the example

T3 the flat cubic torus of dimension 3 : T = (R/Z)3.
Eigenvalues of —Aqs : Ay, p = 472(m? + n? + p?).
Eigenfunctions :

(5, v, 2) = G@mrx)b(2nmy)x (2p72),
with ¢, 1, and x in {cos, sin}.

Vector space of eigenfunctions E,, , ,, of dimension 1, 2, 4 or 8.

L3(T?) = @ Em.np-

(m,n,p)EN?

/\1(T3) = )\07070 =0 and )\k(T?’) = /\1y0’0 = )\07130 = )\07071 = 47T2 for
ke {2,3,4,56,7}.
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The cubic three-dimensional torus

Statement of the result

Theorem

The only Courant-sharp eigenfunctions of —A+s are associated with A\ (T?) for
k €{1,2,3,4,5,6,7} (first and second eigenvalues).

Corollary
For k > 3, we have v, < k — 1.
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Isoperimetric inequality

Main difficulty : the isoperimetric problem on the torus is not solved in dimension
3 or larger.

There are partial results for the periodic isoperimetric problems.

Theorem (Hauswirth—Perez—Romon—Ros, 2004)
Let U/ C T? x R with [U/| < £T. Then

oB2 | [B2] < Jou] [ul .
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The cubic three-dimensional torus

Spheres-cylinders-planes profile

For V € (0,400), I(V):=inf{|0Q] : QC T? xR and |Q| = V'}.

Minimizing among regions bounded by spheres, cylinders and pairs of

two-dimensional planar tori produces the spheres-cylinders-planes profile . For
Ve (0,1],

(36m)1/3V3 if0< V <2 (sphere);
Iscp(V) ={ 2x'/2y1/2 if 22 <V <21 (cylinder);
2 if - <V (pair of tori).
Conjecture : | = Iscp.

Previous result : | = Iscp in the spherical range.

Corentin Léna (UNITO) Nodal Patterns 8 March 2015 27 /471



28 / 47

in
5
g
]
S
>
- VI ©
X -k
BAKLIALLAIKEKS —
ORARKAINRK o, )
&K QRREKKE -
& LOKRKKK
QUK
QK
% K
- 0 ° i -
© O
B :
| -
e
(%) -k
@© N g
e Vi s
B -
4 O 5l 3
4 O 2
5 ~_
: IS S
£ -
4+
()
o
()
o
2 5
— VI 5
> =
\ .
o
—
(o]
L

<
k=
=
2
<]
(&)

Conjectured



Conjectured isoperimetric profile T? x R
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Inequalities in T3

Proposition

Let Q be an open set in T* with |Q| < 4T . We have

982 | B2 % < (jo9] +212)) |2 .

Restatement : (1 - (2Q)3> |0B3| |]B%3|” < |oal ||}

Corollary

Let Q be an open set in T> with |Q < 4T, we have

81’

(- (C2)) ree < neonmr

Remark : \;(B3) = 7.
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Proof of the isoperimetric inequality

Isoperimetric inequality :
0 H,—y = {(X,y,z) eTd: z= t}.
o Q] = [ QN H,ee| dt.
@ There exists t, € (0,1) such that [QNH.—.| < |Q].

o We consider Q := Q\ H,_, as a subset of T2 x R; we have |Q| = |Q| and
|0Q] < 109Q| + 2|Q|.
@ We apply the isoperimetric inequality in T2 x R.
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Upper and lower bounds

Lemma

If X is a Courant-sharp eigenvalue of —Ags with k(\) > 7, then

() ()

Proposition
3
For A > 1272, N(\) > & (2@ . @) _
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Reduction to a finite list

A priori bound : X is not Courant-sharp if x(\) > 270.

After examination of the remaining eigenvalues, the only ones which can be
Courant-sharp are :

o A\(T?) = Xo,0,0 =0;
o for k € {2, ey 7}, )\k(T3) = )\17070 = AO,I,O = )\070’1 = 47T2 ;
o for k € {8, ey 19}, /\k(T?’) = /\171,0 = )\1$071 = /\0,171 = 87T2.
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An isometry of T3

1
1.0.8
1.0.6
\ | z
1.0.4
0 L
1.0.2
y 0.5
Corentin Léna (UNITO) Nodal Patterns 8 March 2015

35 / 47



Courant Theorem with symmetry

e Isometry : o(x,y,z) == (x+1/2,y +1/2,z+1/2).

@ Space of symmetric functions : S := {u € L?(T?) : voo = u}.

@ Hs restriction of —Aps to S.

o (A?)k>1 spectrum of Hs.

o If \ eigenvalue of Hs, ks(A\) :=inf{k : A\7 = A}
If uis an eigenfunction of Hs, and D a nodal domain of u, then o(D) is also a
nodal domain of u. Either 0(D) = D : the domain is symmetric, or (D) # D :
{D,c(D)} is a pair of isometric domains. We denote by «(u) the number of
symmetric domains and by S(u) the number of pairs. We have

v(u) = au) + 28(uw).

Courant theorem with symmetry (Leydold, 1996 ;
Helffer—-Hoffmann-Ostenhof-Terracini, 2010)

If uis an eigenfunction of Hs associated with the eigenvalue ),

a(u) + Bu) < rs(A).

v
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Conclusion of the proof

Remark :

Unnp(x+1/2,y +1/2,z+1/2) =
w(2mrx + mm)Y(2nmy + nm)x(2prz + prw) =

2,2, 2
(_1)m+n+pum,n,P(X7yv Z) = (_1)m e um,n,p(xv}/az)

Consequence : if u is an eigenfunction associated with the eigenvalue 872, it is
symmetric , and v(u) = a(u) + 28(u) < 2(a(u) + B(u)).

On the other hand, 872 is an eigenvalue of Hs with x5(872) = 2. According to
Courant theorem with symmetry, a(u) + S(u) < 2.

Therefore, v(u) < 4 (sharp bound) while x(872) = 8.

The eigenvalue 872 of —Aqs is not Courant-sharp.
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The cubic three-dimensional torus

Remarks and open questions

Does the same result holds for T", n > 47
Hope : find a good enough isoperimetric inequality to show that A is not
Courant-shap if K(\) > 2.

Remark : if K(A) > 2, k() > 2(n+ 1), so we work with nodal domains of
volume no larger than ﬁ

We can make n cuts by planes, and we obtain, for |Q| <

Wn

2n

2 1Q[\ 7 s L
(1—( | ) >|aB"|IB%"~ < ool ja " .
W

n
Wn o, _L_(me)2

but 2n Vmn (2n) .

Even assuming cylinders are optimal, we recover the euclidean isoperimetric

inequality for |Q| < V,,, with
(n _ 1)n(n71)wn . e%—g

n—

V, = L .
n”("*l)o‘)gf A/Tn

Other types of isoperimetric inequalities, valid for all volumes? The gaussian

isoperimetric profile is inefficient for small volumes.
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Parity of the number of nodal domains on rectangular tori

@ Parity of the number of nodal domains on rectangular tori
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Parity of the nodal count

T? := (R/Z) x (R/bZ)

Amon = 47° <m2 + n2>
m,n b2 5

Eigenfunctions v<¢,, v, usS . u>s , with the same notation as before.

m,n' “m,n “m,n» “m,n»

Eigenvalues of —Apz

T. Hoffmann-Ostenhof. Geometric aspects of spectral theory (July 1st — July 7th,
2012), Problem Section (xv).
Oberwolfach Rep., 9(3) :2013-2076, 2012.T. Hoffmann-Ostenhof.

Problem

Is there a flat torus so that for some eigenfunction in the eigenspace E, , , for
some Any, , there is an non-constant eigenfunction u with an odd number of nodal
domains ?
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Parity of the number of nodal domains on rectangular tori

Irrational case

Proposition

If b? is irrational, any non-constant eigenfunction u of _ATi has an even number
of nodal domains.

Nodal lines of s + Lug®, for b=e : SO O

Proof :
o If m>0, setv:=(1/2m,0).
e For each basis function v € {ufy ,, uss ,, uss ,, ups ,}, we have
u(x +v) = —u(x).
Example : cos (2rmx + ) cos (252) = — cos (2rmx) cos (25
@ We have a bijection between positive and negative nodal domains.

o If m=0, n> 0, and we do the same with v := (0, b/2n).
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Parity of the number of nodal domains on rectangular tori

Proposition

If b =1, any non-constant eigenfunction u of—ATi has an even number of nodal
domains.

In that case we can have higher multiplicities with pairs (m, n) # (m’, n’) such
that m? + n?> = m'? 4 n'?.

Lemma (Hoffmann-Ostenhof, 2015)

For (m, n) # (0,0), we write A = m? + n?. If A\ = 2?P(2q + 1) with (p, q) € N2,
then m = 2Pmgy and n = 2Pngy, where exactly one of the integers my and ng is

odd. If A = 22P*1(2g + 1) with (p,q) € N?, then n = 2Pmg and n = 2Pny , where
both integers mg and ng are odd.

@ In the first case, we set v := (1/2PF1 1/2P+1),
@ In the second case, we set v := (1/2P"1,0) or v := (0,1/2P"1).

Corollary
For k > 4, we have v, < k — 2. J

Corentin Léna (UNITO) Nodal Patterns 8 March 2015 42 /471



Parity of the number of nodal domains on rectangular tori

— L
Counter-example for b = e

Proposition

If b = ==, there exists an eigenfunction of — Aq2 with three nodal domains. J

i

(d) MV (ugsy (e) N(us

. 1 — cc cc
Idea : consider v. = uf + cus%,.

FIGURE : Nodal sets of basis functions
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Parity of the number of nodal domains on rectangular tori

FIGURE : Nodal set of v. = uf + cus with e = 0.1
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Parity of the number of nodal domains on rectangular tori

Proof

1 1
R:=0,=|x[0,——].
o2l ozl
Change of coordinates :
s = —cos(2mx);
t = —cos(3).
R is sent to ] — 1,1[x] — 1,1[. Nodal set of v. in the new coordinates :

st +e(2s —1) =0,

two branches of hyperbola.
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Parity of the number of nodal domains on rectangular tol

(a) In (x, y)-coordinates (b) In (u, v)-coordinates

FIGURE : Nodal set in R
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Parity of the number of nodal domains on rectangular tori

@ The arithmetical lemma still holds for the equation A = am? + Bn?, with
o+ 8 =2 mod 4. Therefore, if b = \/% there can only be an even number
of nodal domains.

@ Assuming that

that is to say
b= ———,
mvk?—1
Ve = U, + 5“/313,0
is an eigenfunction, with 2mn + 1 nodal domains for a small €.
@ Problem : characterizing the rational numbers g, such that there exists an

eigenfunction on the torus T%/E with an odd number of nodal domains.
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