Nodal patterns for the Laplacian on flat tori Workshop on Variational Perspectives Politecnico di Torino

Corentin Léna

Università degli studi Torino

8 March 2015

- 1 Review of general results
- 2 The square two-dimensional torus
- 3 The cubic three-dimensional torus
- Parity of the number of nodal domains on rectangular tori

Plan

Review of general results

2) The square two-dimensional torus

- 3 The cubic three-dimensional torus
- Parity of the number of nodal domains on rectangular tori

Introduction

- *M* compact and connected manifold (with or without boundary) of dimension n; this include the case of a bounded open set $\Omega \subset \mathbb{R}^n$.
- $\lambda_1(M) \leq \lambda_2(M) \leq \cdots \leq \lambda_k(M) \leq \cdots$ eigenvalues of the Laplacian $-\Delta_M$, counted with multiplicities : for all $k \geq 1$, there a non-zero eigenspace $E_{\lambda_k(M)}$, such that for all $u \in E_{\lambda_k(M)}$,

$$-\Delta_M u = \lambda_k(M)u.$$

If $\partial M \neq \emptyset$, we impose a boundary condition :

$$u = 0$$
 on ∂M (Dirichlet) or $\frac{\partial u}{\partial \nu} = 0$ on ∂M (Neumann).

For some domains we can make explicit computation of the spectrum and of a basis of eigenfunctions : rectangles, flat tori, spheres and balls, some triangles, circular sectors,...

Corentin Léna (UNITO)

<ロ> (四) (四) (三) (三) (三) (三)

Nodal set and nodal domains

If *u* eigenfunction :

- nodal set : $\mathcal{N}(u) = \overline{\{x \in M; u(x) = 0\}};$
- nodal domain : connected component of $M \setminus \mathcal{N}(u)$;
- nodal partition associated with u : family of all the nodal domains of u.
 What information can we get about these objects ?

We focus on the number of nodal domains $\nu(u)$, called the nodal count.

For λ eigenvalue, we define

 $\kappa(\lambda) := \min\{k : \lambda_k(M) = \lambda\}.$

<ロ> (日) (日) (日) (日) (日)

Example : increase of nodal count by linear combination

- $\Omega = (0,1)^2 \subset R^2$ and $\lambda = 10\pi^2 = \pi^2(3^3 + 1^2)$.
- $u(x, y) = \sin(3\pi x)\sin(\pi y)$ and $v(x, y) = \sin(\pi y)\sin(3\pi x)$.
- If w := u + v, $w(x, y) = 4\sin(\pi x)\sin(\pi y)\sin(\pi(x + y))\sin(\pi(y x))$.
- $\nu(u) = \nu(v) = 3$ and $\nu(u + v) = 4$.

イロト 不得下 イヨト イヨト

Courant nodal domain theorem

Theorem (Courant, 1923)

If u is an eigenfunction of $-\Delta_M$ associated with the eigenvalue λ , $\nu(u) \leq \kappa(\lambda)$.

Proof : By contradiction, let $\kappa := \kappa(\lambda)$ and let u be an eigenfunction associated with λ , with nodal domains

 $D_1,\ldots,D_\kappa,D_{\kappa+1},\ldots$

There is a non-zero linear combination

$$\varphi = \alpha_1 \varphi_{D_1} + \dots + \alpha_\kappa \varphi_{D_\kappa}$$

orthogonal to each u_i for $1 \le i \le \kappa - 1$. Therefore, according to the max-min principle

$$\lambda_{\kappa} \leq rac{\int_{M} |
abla arphi|^2 dx}{\int_{M} |arphi|^2 dx} \leq \lambda = \lambda_{\kappa},$$

and φ is an eigenfunction associated to λ . But φ is identically zero on $D_{\kappa+1}$, in contradiction with unique continuation.

Corentin Léna (UNITO)

Courant-sharp eigenvalue and minimal partitions

Definition

We say that an eigenfunction u associated with the eigenvalue λ is Courant-sharp if $\nu(u) = \kappa(\lambda)$. We say an eigenvalue λ is Courant-sharp if E_{λ} contains a Courant-sharp eigenfunction.

Definition

- k-partition : family of k open, connected and disjoint subsets of M,
 D = {D₁,..., D_k}.
- Energy : $\Lambda_k(\mathcal{D}) = \max_{1 \le i \le k} \lambda_1(D_i)$.
- Minimal energy : $\mathfrak{L}_k(M) := \inf_{\mathcal{D}} \Lambda_k(\mathcal{D}).$
- Minimal k-partition $\mathcal{D}^* : \Lambda_k(\mathcal{D}^*) = \mathfrak{L}_k(M)$.

The max-min principle tells us that the nodal partition associated with a Courant-sharp eigenfunction is minimal.

For n = 2, the converse is true : any eigenfunction, whose associated nodal partition is minimal, is necessarily Courant-sharp (Helffer-Hoffmann-Ostenhof-Terracini, 2009).

Corentin Léna (UNITO)

Refinement of Courant theorem

```
We define \nu_k = \max\{\nu(u); u \in E_{\lambda_k(M)}\}.
```

Theorem (Pleijel, 1956)

If Ω is a bounded open set in \mathbb{R}^2 with a regular boundary, only a finite number of eigenvalues are Courant-sharp. In fact

$$\limsup_{k\to\infty}\frac{\nu_k}{k}\leq \frac{4}{\lambda_1(\mathbb{D})}=\frac{4}{j_{0,1}^2}<1.$$

Theorem (Bérard–Meyer, 1982)

For all $n \ge 2$, there exists $\gamma_n < 1$ such that, for all compact manifold M of dimension n,

$$\limsup_{k\to+\infty}\frac{\nu_k}{k}\leq \gamma_n.$$

Here we are imposing a Dirichlet boundary condition on ∂M if $\partial M \neq \emptyset$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Pleijel's result

- Let u, associated with $\lambda_k(\Omega)$, have ν_k nodal domains D_1, \ldots, D_{ν_k} .
- Applying Faber-Krahn : $\lambda_k(\Omega) = \lambda_1(D_i) \ge \frac{\pi j_{0,1}^2}{|D_i|}$ pour $1 \le i \le \nu_k$.
- Summing : $\nu_k \pi j_{0,1}^2 \leq \lambda_k(\Omega) |\Omega|$.
- Weyl's law : $\lambda_k(\Omega) \sim \frac{4\pi k}{|\Omega|}$.
- Conclusion : $\limsup_{k \to +\infty} \frac{\nu_k}{k} \le \frac{4}{j_{0,1}^2}$.

<ロ> (日) (日) (日) (日) (日)

Additional remarks

- Asymptotic isoperimetric inequality for domains of small volume in the proof by Bérard–Meyer : for all $\varepsilon > 0$, there exists $V(\varepsilon, M) > 0$ such that, if $|D| \leq V(\varepsilon, M)$, $|\partial D| |D|^{-\frac{n-1}{n}} \geq (1-\varepsilon) |\partial \mathbb{B}^n| |\mathbb{B}^n|^{-\frac{n-1}{n}}$.
- Asymptotic Faber-Krahn inequality : if $|D| \leq V(\varepsilon, M)$, $\lambda_1(D)|D|^{\frac{2}{n}} \geq (1-\varepsilon)^2 \lambda_1(\mathbb{B}^n) |\mathbb{B}^n|^{\frac{2}{n}}$.
- The constant γ_n is explicit :

$$\gamma_n = \frac{(2\pi)^n}{\omega_n^2 \lambda_1(\mathbb{B}^n)^{n/2}} = \frac{(2\pi)^n}{\omega_n^2 j_{(n-2)/2,1}^n} = \frac{2^{n-2} n^2 \Gamma(\frac{n}{2})^2}{j_{(n-2)/2,1}^n} < 1.$$

The sequence $(\gamma_n)_{n\geq 2}$ is decreasing and $\gamma_n = O\left(n\left(\frac{2}{e}\right)^n\right)$.

Problem open for the Neumann boundary condition. Conjecture : same theorem, with the same constant. Proved in the case of a bounded open set in ℝ² with a piecewise analytic boundary (Polterovich, 2009). Key point : the number of nodal domain touching the boundary is controlled by √λ (Toth-Zeldtich, 2009).

Corentin Léna (UNITO)

• Conjecture by Polterovich, in the case of a bounded domain in $\Omega \in \mathbb{R}^2$:

$$\limsup_{k\to+\infty}\frac{\nu_k}{k}\leq \frac{4}{\lambda_1\left((0,\sqrt{\pi})^2\right)}=\frac{2}{\pi}\simeq 0.6366.$$

Compare with the upper bound $\frac{4}{j_{0,1}^2} \simeq 0.6917$.

- In the case of a rectangle $\mathcal{R}_{a,b} = (0,a) \times (0,b)$, with $\frac{b^2}{a^2} \notin \mathbb{Q}$, the set of limit points of the sequence $\left(\frac{\nu_k}{k}\right)_{k \ge 1}$ is the interval $\left[0, \frac{2}{\pi}\right]$.
- Corresponding conjecture in dimension n > 2:

$$\limsup_{k\to+\infty}\frac{\nu_k}{k}\leq \frac{(2\pi)^n}{\omega_n^2\lambda_1\left(\left(0,\omega_n^{1/n}\right)\right)^{n/2}}=\frac{2^n}{\omega_nn^{n/2}}.$$

In the case of an irrational rectangular domain R_a = Πⁿ_{i=1}(0, a_i) (the a_i⁻²'s are linearly independent over Q), the set of limit points of (^{ν_k}/_k)_{k≥1} is the interval [0, ^{2ⁿ}/_{ω_nn^{n/2}}].

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Some examples

All Courant-sharp eigenvalues besides $\lambda_1(M)$ and $\lambda_2(M)$ are known in some specific examples.

- Square, Dirichlet case (λ_4) (Pleijel, 1956; Bérard–Helffer 2014);
- Sphere \mathbb{S}^2 (none) (Leydold, 1996);
- Disk, Dirichlet case (λ₄) (Helffer–Hoffmann-Ostenhof–Terracini, 2009);
- Square, Neumann case (λ_4 , λ_5 , and λ_9) (Helffer–Persson-Sundqvist, 2014);
- Square and cubical tori (none) (L., 2014, L. 2015);
- Equilateral torus (none), equilateral (λ_4), hemi-equilateral (none) and right-angled isosceles (none) triangles (Bérard–Helffer, 2015);
- Disk, Neumann case (λ_4) , \mathbb{S}^{n-1} for $n \ge 4$ (none), and unit ball in dimension $n \ge 3$, Dirichlet and Neumann cases (none) (Helffer–Persson-Sundqvist, 2015);
- Cube, Dirichlet case (none) (Helffer-Kiwan, 2015);
- Right-angled isosceles triangle, Neumann case (λ₃, λ₄ and λ₆) (Band-Bersudsky-Fajman, 2015)

Plan

Review of general results

2 The square two-dimensional torus

3 The cubic three-dimensional torus

Parity of the number of nodal domains on rectangular tori

Presentation of the example

$$\begin{split} \mathbb{T}^2 \ \text{flat square torus of dimension } 2 : \mathbb{T}^2 &= (\mathbb{R}/\mathbb{Z})^2. \\ \text{Eigenvalues of } -\Delta_{\mathbb{T}^2} : \lambda_{m,n} = 4\pi^2(m^2 + n^2). \\ \text{Eigenfunctions :} \\ & u_{m,n}^{cc}(x,y) = \cos(2m\pi x)\cos(2n\pi y); \\ & u_{m,n}^{cs}(x,y) = \cos(2m\pi x)\sin(2n\pi y); \\ & u_{m,n}^{sc}(x,y) = \sin(2m\pi x)\cos(2n\pi y); \end{split}$$

 $u_{m,n}^{ss}(x,y) = \sin(2m\pi x)\sin(2n\pi y).$

Vector space of eigenfunctions $E_{m,n}$, of dimension 1, 2 or 4.

$$L^2(\mathbb{T}^2) = \bigoplus_{(m,n)\in\mathbb{N}^2} E_{m,n}.$$

 $\lambda_1(\mathbb{T}^2) = \lambda_{0,0} = 0 \text{ and } \lambda_k(\mathbb{T}^2) = \lambda_{1,0} = \lambda_{0,1} = 4\pi^2 \text{ for } k \in \{2,3,4,5\}.$

Statement of the result

Theorem

The only Courant-sharp eigenfunctions of $-\Delta_{\mathbb{T}^2}$ are associated with $\lambda_k(\mathbb{T}^2)$ for $k \in \{1, 2, 3, 4, 5\}$ (first and second eigenvalues).

Corollary

The minimal k-partitions of \mathbb{T}^2 are nodal only for $k \in \{1, 2\}$.

Corollary

For $k \geq 3$, we have $\nu_k \leq k - 1$.

Isoperimetric domains for \mathbb{T}^2 (Howards–Hutchings–Morgan, 1999)

Isoperimetric profile for \mathbb{T}^2

For $A \in (0,1]$, $I(A) := \inf \left\{ |\partial \Omega| \ : \ \Omega \subset \mathbb{T}^2 \text{ and } |\Omega| = A \right\}.$

Faber-Krahn inequality for \mathbb{T}^2

Proposition

Let $D \subset \mathbb{T}^2$ such that $|D| \leq \frac{1}{\pi}$. Then $\lambda_1(D)|D| \geq \pi j_{0,1}^2$.

Proof : we use the co-area formula and apply Schwartz symmetrization to the level sets $D_t = \{x; u(x) > t\}$, where u is a positive eigenfunction associated with $\lambda_1(D)$. This works since all the level sets satisfy $|D_t| \leq \frac{1}{\pi}$.

Upper and lower bounds

Lemma

If λ is a Courant-sharp eigenvalue with $\kappa(\lambda) \geq 4$, then $\kappa(\lambda) \leq \frac{\lambda}{\pi j_{0,1}^{2}}$.

Proof : for *u* associated eigenfunction with $\kappa(\lambda)$ nodal domains, there is one nodal domain *D* satisfying $|D| \leq \frac{1}{\kappa(\lambda)} < \frac{1}{\pi}$, and therefore $\pi j_{0,1}^2 \leq \lambda_1(D)|D| \leq \frac{\lambda}{\kappa(\lambda)}$.

$$N(\lambda) := \sharp\{k : \lambda_k(\mathbb{T}^2) < \lambda\}$$
 (counting function).

Lower bound : $N(\lambda) > \pi \left(\frac{\sqrt{\lambda}}{2\pi} - \frac{\sqrt{2}}{2}\right)^2$.

For an eigenvalue λ , $\kappa(\lambda) = N(\lambda) + 1$.

A priori bound : λ is not Courant-sharp if $\kappa(\lambda) \geq 27$.

Reduction to a finite list

$\frac{\lambda}{4\pi^2}$	indices	multiplicity	κ	$\frac{\lambda}{\pi j_{0,1}^2}$
0	(0,0)	1	1	
1	(1,0), (0,1)	4	2	
2	(1, 1)	4	6	4.35
4	(2,0), (0,2)	4	10	8.69
5	(2,1), (1,2)	8	14	10.86
8	(2, 2)	4	22	17.38
9	(3,0), (0,3)	4	26	19.56

TABLE : The 29 first eigenvalues

・ロト ・回ト ・ヨト ・ヨト

Numerical results

FIGURE : Minimal k-partitions of \mathbb{T}^2 for $k \in \{3, 4, 5\}$

For $k \in \{3, 4\}$, the tilings by hexagons are actually not minimal.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Plan

1) Review of general results

The square two-dimensional torus

- The cubic three-dimensional torus
 - 4) Parity of the number of nodal domains on rectangular tori

Presentation of the example

 \mathbb{T}^3 the flat cubic torus of dimension $3 : \mathbb{T}^3 = (\mathbb{R}/\mathbb{Z})^3$. Eigenvalues of $-\Delta_{\mathbb{T}^3} : \lambda_{m,n,p} = 4\pi^2(m^2 + n^2 + p^2)$. Eigenfunctions :

 $u_{m,n,p}(x,y,z) = \varphi(2m\pi x)\psi(2n\pi y)\chi(2p\pi z),$

with φ , ψ , and χ in {cos, sin}.

Vector space of eigenfunctions $E_{m,n,p}$, of dimension 1, 2, 4 or 8.

$$L^2(\mathbb{T}^2) = \bigoplus_{(m,n,p)\in\mathbb{N}^2} E_{m,n,p}.$$

 $\lambda_1(\mathbb{T}^3) = \lambda_{0,0,0} = 0$ and $\lambda_k(\mathbb{T}^3) = \lambda_{1,0,0} = \lambda_{0,1,0} = \lambda_{0,0,1} = 4\pi^2$ for $k \in \{2, 3, 4, 5, 6, 7\}.$

Statement of the result

Theorem

The only Courant-sharp eigenfunctions of $-\Delta_{\mathbb{T}^3}$ are associated with $\lambda_k(\mathbb{T}^3)$ for $k \in \{1, 2, 3, 4, 5, 6, 7\}$ (first and second eigenvalues).

Corollary

For $k \geq 3$, we have $\nu_k \leq k - 1$.

<ロト < 回 > < 回 > < 回 > < 回 >

Isoperimetric inequality

Main difficulty : the isoperimetric problem on the torus is not solved in dimension 3 or larger.

There are partial results for the periodic isoperimetric problems.

Theorem (Hauswirth–Perez–Romon–Ros, 2004) Let $\mathcal{U} \subset \mathbb{T}^2 \times \mathbb{R}$ with $|\mathcal{U}| \leq \frac{4\pi}{81}$. Then

 $\left|\partial \mathbb{B}^{3}\right| \left|\mathbb{B}^{3}\right|^{-\frac{2}{3}} \leq \left|\partial \mathcal{U}\right| \left|\mathcal{U}\right|^{-\frac{2}{3}}.$

	Corentin	Léna ((UNI	TO)
--	----------	--------	------	-----

Spheres-cylinders-planes profile

For $V \in (0, +\infty)$, $I(V) := \inf \{ |\partial \Omega| : \Omega \subset \mathbb{T}^2 \times \mathbb{R} \text{ and } |\Omega| = V \}.$

Minimizing among regions bounded by spheres, cylinders and pairs of two-dimensional planar tori produces the spheres-cylinders-planes profile . For $V \in (0, 1]$,

$$I_{SCP}(V) = \begin{cases} (36\pi)^{1/3} V^{2/3} & \text{if } 0 < V \le \frac{4\pi}{81} & (\text{sphere}); \\ 2\pi^{1/2} V^{1/2} & \text{if } \frac{4\pi}{81} \le V \le \frac{1}{\pi} & (\text{cylinder}); \\ 2 & \text{if } \frac{1}{\pi} \le V & (\text{pair of tori}). \end{cases}$$

Conjecture : $I = I_{SCP}$.

Previous result : $I = I_{SCP}$ in the spherical range.

<ロ> (日) (日) (日) (日) (日)

Conjectured isoperimetric domains for $\mathbb{T}^2\times\mathbb{R}$

Conjectured isoperimetric profile $\mathbb{T}^2\times\mathbb{R}$

Inequalities in \mathbb{T}^3

Proposition

Let Ω be an open set in \mathbb{T}^3 with $|\Omega| \leq \frac{4\pi}{81}$. We have

$$\left|\partial \mathbb{B}^{3}\right|\left|\mathbb{B}^{3}\right|^{-\frac{2}{3}} \leq \left(\left|\partial \Omega\right|+2\left|\Omega\right|\right)\left|\Omega\right|^{-\frac{2}{3}} \, .$$

$$\mathsf{Restatement}: \left(1 - \left(\frac{2|\Omega|}{9\pi}\right)^{\frac{1}{3}}\right) \left|\partial \mathbb{B}^3\right| \left|\mathbb{B}^3\right|^{-\frac{2}{3}} \leq \left|\partial \Omega\right| \left|\Omega\right|^{-\frac{2}{3}} \, .$$

Corollary

Let Ω be an open set in \mathbb{T}^3 with $|\Omega| \leq \frac{4\pi}{81}$, we have

$$\left(1-\left(rac{2\left|\Omega
ight|}{9\pi}
ight)^{rac{1}{3}}
ight)^{2}\lambda_{1}(\mathbb{B}^{3})\left|\mathbb{B}^{3}
ight|^{rac{2}{3}}\leq\lambda_{1}(\Omega)\left|\Omega
ight|^{rac{2}{3}}.$$

Remark : $\lambda_1(\mathbb{B}^3) = \pi^2$.

Nodal Patterns

8 March 2015 30 / 47

イロン イロン イヨン イヨ

Cutting procedure (adapted from Bérard–Meyer, 1982)

31 / 47

Corentin Léna (UNITO)

Proof of the isoperimetric inequality

Isoperimetric inequality :

- $\mathcal{H}_{z=t} := \{(x, y, z) \in \mathbb{T}^3 : z = t\}.$
- $|\Omega| = \int_0^1 |\Omega \cap \mathcal{H}_{z=t}| dt.$
- There exists $t_z \in (0,1)$ such that $|\Omega \cap \mathcal{H}_{z=t_z}| \le |\Omega|$.
- We consider $\widetilde{\Omega} := \Omega \setminus \mathcal{H}_{z=t}$ as a subset of $\mathbb{T}^2 \times \mathbb{R}$; we have $|\widetilde{\Omega}| = |\Omega|$ and $|\partial \widetilde{\Omega}| \le |\partial \Omega| + 2|\Omega|$.
- We apply the isoperimetric inequality in $\mathbb{T}^2 \times \mathbb{R}$.

Upper and lower bounds

Lemma

If λ is a Courant-sharp eigenvalue of $-\Delta_{\mathbb{T}^3}$ with $\kappa(\lambda) \geq 7$, then

$$\kappa(\lambda) \leq \left(\left(rac{3}{4\pi^4}
ight)^rac{1}{3}\sqrt{\lambda} + \left(rac{2}{9\pi}
ight)^rac{1}{3}
ight)^3.$$

Proposition

For
$$\lambda \geq 12\pi^2$$
 , $N(\lambda) \geq rac{4\pi}{3}\left(rac{\sqrt{\lambda}}{2\pi} - rac{\sqrt{3}}{2}
ight)^3$.

		1. 2	(11011-0)	
Core	intin	Lena		

・ロト ・回ト ・ヨト ・ヨト

Reduction to a finite list

A priori bound : λ is not Courant-sharp if $\kappa(\lambda) \ge 270$.

After examination of the remaining eigenvalues, the only ones which can be Courant-sharp are :

- $\lambda_1(\mathbb{T}^3) = \lambda_{0,0,0} = 0$;
- for $k \in \{2, \ldots, 7\}$, $\lambda_k(\mathbb{T}^3) = \lambda_{1,0,0} = \lambda_{0,1,0} = \lambda_{0,0,1} = 4\pi^2$;
- for $k \in \{8, \ldots, 19\}$, $\lambda_k(\mathbb{T}^3) = \lambda_{1,1,0} = \lambda_{1,0,1} = \lambda_{0,1,1} = 8\pi^2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

An isometry of \mathbb{T}^3

Courant Theorem with symmetry

- Isometry : $\sigma(x, y, z) := (x + 1/2, y + 1/2, z + 1/2).$
- Space of symmetric functions : S := {u ∈ L²(T³) : u ∘ σ = u}.
- H_S restriction of $-\Delta_{\mathbb{T}^3}$ to \mathcal{S} .
- $(\lambda_k^S)_{k\geq 1}$ spectrum of H_S .
- If λ eigenvalue of H_S , $\kappa_S(\lambda) := \inf\{k : \lambda_k^S = \lambda\}$

If *u* is an eigenfunction of H_S , and *D* a nodal domain of *u*, then $\sigma(D)$ is also a nodal domain of *u*. Either $\sigma(D) = D$: the domain is symmetric, or $\sigma(D) \neq D$: $\{D, \sigma(D)\}$ is a pair of isometric domains. We denote by $\alpha(u)$ the number of symmetric domains and by $\beta(u)$ the number of pairs. We have $\nu(u) = \alpha(u) + 2\beta(u)$.

Courant theorem with symmetry (Leydold, 1996; Helffer–Hoffmann-Ostenhof–Terracini, 2010)

If u is an eigenfunction of H_S associated with the eigenvalue λ ,

 $\alpha(u) + \beta(u) \leq \kappa_{\mathcal{S}}(\lambda).$

Conclusion of the proof

Remark :

$$u_{m,n,p}(x+1/2, y+1/2, z+1/2) = \varphi(2m\pi x + m\pi)\psi(2n\pi y + n\pi)\chi(2p\pi z + p\pi) = (-1)^{m+n+p}u_{m,n,p}(x, y, z) = (-1)^{m^2+n^2+p^2}u_{m,n,p}(x, y, z)$$

Consequence : if u is an eigenfunction associated with the eigenvalue $8\pi^2$, it is symmetric , and $\nu(u) = \alpha(u) + 2\beta(u) \le 2(\alpha(u) + \beta(u))$.

On the other hand, $8\pi^2$ is an eigenvalue of H_5 with $\kappa_5(8\pi^2) = 2$. According to Courant theorem with symmetry, $\alpha(u) + \beta(u) \le 2$.

Therefore, $\nu(u) \leq 4$ (sharp bound) while $\kappa(8\pi^2) = 8$.

The eigenvalue $8\pi^2$ of $-\Delta_{\mathbb{T}^3}$ is not Courant-sharp.

Remarks and open questions

- Does the same result holds for \mathbb{T}^n , $n \ge 4$?
- Hope : find a good enough isoperimetric inequality to show that λ is not Courant-shap if $\kappa(\lambda) > 2$.
- Remark : if $\kappa(\lambda) > 2$, $\kappa(\lambda) \ge 2(n+1)$, so we work with nodal domains of volume no larger than $\frac{1}{2(n+1)}$.
- We can make *n* cuts by planes, and we obtain, for $|\Omega| \leq \frac{\omega_n}{2^n}$,

$$\left(1-\left(\frac{2^{n}\left|\Omega\right|}{\omega_{n}}\right)^{\frac{1}{n}}\right)\left|\partial\mathbb{B}^{n}\right|\left|\mathbb{B}^{n}\right|^{-\frac{n-1}{n}}\leq\left|\partial\Omega\right|\left|\Omega\right|^{-\frac{n-1}{n}},$$

but $\frac{\omega_n}{2^n} \sim \frac{1}{\sqrt{\pi n}} \left(\frac{\pi e}{2n}\right)^{\frac{n}{2}}$.

• Even assuming cylinders are optimal, we recover the euclidean isoperimetric inequality for $|\Omega| \leq V_n$, with

$$V_n = \frac{(n-1)^{n(n-1)}\omega_{n-1}^n}{n^{n(n-1)}\omega_n^{n-1}} \sim \frac{e^{\frac{1}{4}-\frac{n}{2}}}{\sqrt{\pi n}}.$$

 Other types of isoperimetric inequalities, valid for all volumes? The gaussian isoperimetric profile is inefficient for small volumes.

Corentin Léna (UNITO)

Plan

Parity of the number of nodal domains on rectangular tori

Parity of the nodal count

 $\mathbb{T}_b^2 := (\mathbb{R}/\mathbb{Z}) \times (\mathbb{R}/b\mathbb{Z})$

Eigenvalues of $-\Delta_{\mathbb{T}^2_h}$:

$$\lambda_{m,n} = 4\pi^2 \left(m^2 + rac{n^2}{b^2}
ight) \, ,$$

Eigenfunctions $u_{m,n}^{cc}$, $u_{m,n}^{cs}$, $u_{m,n}^{sc}$, $u_{m,n}^{ss}$, with the same notation as before.

T. Hoffmann-Ostenhof. Geometric aspects of spectral theory (July 1st – July 7th, 2012), Problem Section (xv). *Oberwolfach Rep.*, 9(3) :2013–2076, 2012.T. Hoffmann-Ostenhof.

Problem

Is there a flat torus so that for some eigenfunction in the eigenspace $E_{\lambda_{m,n}}$ for some $\lambda_{m,n}$ there is an non-constant eigenfunction u with an odd number of nodal domains?

Irrational case

Proposition

If b^2 is irrational, any non-constant eigenfunction u of $-\Delta_{\mathbb{T}^2_b}$ has an even number of nodal domains.

Nodal lines of $u_{3,2}^{cc} + \frac{1}{2}u_{3,2}^{ss}$ for $b = e^{-1}$:

イロト イポト イヨト イヨト

Proof :

- If m > 0, set $\mathbf{v} := (1/2m, 0)$.
- For each basis function $u \in \{u_{m,n}^{cc}, u_{m,n}^{cs}, u_{m,n}^{sc}, u_{m,n}^{ss}\}$, we have $u(\mathbf{x} + \mathbf{v}) = -u(\mathbf{x})$. Example : $\cos(2\pi mx + \pi)\cos(\frac{2\pi ny}{b}) = -\cos(2\pi mx)\cos(\frac{2\pi ny}{b})$
- We have a bijection between positive and negative nodal domains.
- If m = 0, n > 0, and we do the same with $\mathbf{v} := (0, b/2n)$.

The case b = 1

Proposition

If b = 1, any non-constant eigenfunction u of $-\Delta_{\mathbb{T}^2_b}$ has an even number of nodal domains.

In that case we can have higher multiplicities with pairs $(m, n) \neq (m', n')$ such that $m^2 + n^2 = m'^2 + n'^2$.

Lemma (Hoffmann-Ostenhof, 2015)

For $(m, n) \neq (0, 0)$, we write $\lambda = m^2 + n^2$. If $\lambda = 2^{2p}(2q + 1)$ with $(p, q) \in \mathbb{N}^2$, then $m = 2^p m_0$ and $n = 2^p n_0$, where exactly one of the integers m_0 and n_0 is odd. If $\lambda = 2^{2p+1}(2q + 1)$ with $(p, q) \in \mathbb{N}^2$, then $n = 2^p m_0$ and $n = 2^p n_0$, where both integers m_0 and n_0 are odd.

- In the first case, we set $\mathbf{v} := (1/2^{p+1}, 1/2^{p+1})$.
- In the second case, we set $\mathbf{v} := (1/2^{p+1}, 0)$ or $\mathbf{v} := (0, 1/2^{p+1})$.

Corollary

For $k \geq 4$, we have $\nu_k \leq k-2$.

Counter-example for $b = \frac{1}{\sqrt{3}}$

Proposition

If $b = \frac{1}{\sqrt{3}}$, there exists an eigenfunction of $-\Delta_{\mathbb{T}^2_b}$ with three nodal domains.

Idea : consider $v_{\varepsilon} = u_{1,1}^{cc} + \varepsilon u_{2,0}^{cc}$.

FIGURE : Nodal sets of basis functions

・ロト ・個ト ・ヨト ・ヨト

 ${\rm Figure}$: Nodal set of $v_{\varepsilon}=u_{1,1}^{cc}+\varepsilon u_{2,0}^{cc}$ with $\varepsilon=0.1$

(日) (四) (王) (王)

Proof

$$R:=\left]0,rac{1}{2}\left[imes
ight]0,rac{1}{2\sqrt{3}}\left[imes
ight].$$

Change of coordinates :

$$\begin{cases} s = -\cos(2\pi x); \\ t = -\cos\left(\frac{2\pi y}{b}\right). \end{cases}$$

R is sent to $]-1,1[\times]-1,1[$. Nodal set of v_{ε} in the new coordinates :

$$st+\varepsilon(2s^2-1)=0\,,$$

two branches of hyperbola.

FIGURE : Nodal set in R

Remarks

- The arithmetical lemma still holds for the equation $\lambda = \alpha m^2 + \beta n^2$, with $\alpha + \beta = 2 \mod 4$. Therefore, if $b = \sqrt{\frac{\alpha}{\beta}}$ there can only be an even number of nodal domains.
- Assuming that

$$m^2 + \frac{n^2}{b^2} = k^2 m^2,$$

that is to say

$$b=\frac{n}{m\sqrt{k^2-1}},$$

$$v_{\varepsilon} = u_{m,n}^{cc} + \varepsilon u_{km,0}^{c,c}$$

is an eigenfunction, with 2mn + 1 nodal domains for a small ε .

• Problem : characterizing the rational numbers q, such that there exists an eigenfunction on the torus $\mathbb{T}^2_{\sqrt{q}}$ with an odd number of nodal domains.